Skip to content
Understanding RAID Configurations

Understanding RAID Configurations

Who Needs RAID?

You may want to try one or more RAID configurations if you need to:
  • Maintain maximum uptime and availability on your system
  • Work with large files without slowing down operations
  • Have data redundancy to protect important information
  • Increase the potential mean time to failure of your system
  • RAID Storage vs. Data Backup

RAID Storage vs. Data Backup

While RAID can make your data storage more powerful and resilient, it’s not the same thing as data backup. RAID arrays spread I/O operations across multiple disks in order to read and write data faster, or to mirror data on one drive across other drives, which allows the whole system to continue operating without data loss if one of those drives fails.

On the other hand, data backup helps you restore lost files. So, while data backup solutions are meant to get you back on your feet in the event of total data loss, RAID is designed to help avoid that kind of loss in the first place. Similarly, while RAID makes your overall storage system more resilient, it still only counts as one copy of your data.

RAID 0: High Performance

RAID 0 offers the fastest read/write speeds and maximum availability of raw storage capacity. Although RAID is typically associated with data redundancy, RAID 0 does not provide any. However, it does provide the best performance of any RAID level.

It achieves this by breaking up data into smaller groups and storing it on separate disks. For example, in a two-disk array, the data is split evenly across the two disks, doubling your speed. In a four-disk array, you can quadruple your speed, and so on.

RAID 1: Solid Data Protection (Mirror, Minimum 2 drives)

RAID 1 is an excellent option when data protection and redundancy is your primary goal. This RAID type stores your data on one disk and then keeps a separate copy of that data on each of the available remaining disks.

This means that if one disk goes down, you still have your data ready to go. This approach gives you the usable storage capacity and write speeds of one disk but offers strong data protection.

RAID 5: Balanced Data Protection and Speed (Minimum 3 drives)

Requiring a RAID system of three or more drives, RAID 5 offers the best of both worlds, balancing performance and redundancy.

It does this by splitting data into groups across all available drives and creating distributed parity, where data calculations are stored across the drives so that any one drive may fail, and the data — or parity — on the other drives can reconstitute what was lost on the failed drive. This is a faster setup than a RAID 1 but allows for single-disk fault tolerance ( ne matter how many are in the array) unlike raid 0, providing both speed and data protection.


RAID 10: High Reliability and Performance (Minimum 4 drives)

RAID 10 nests at least two RAID 1 sets within a RAID 0 configuration. This blends performance with potentially higher fault tolerance. Mirroring lends additional redundancy, which means that you can retain your data even if you lose up to half your disks — provided your mirrored copy does not fail.

This is why businesses and other professional teams use RAID 10 where uptime and availability are critical for intense workflows.

RAID Capacity Calculator

Ready to test out your ideal RAID configuration? Use our RAID Capacity Calculator to select your RAID type and see how much available space you’ll have based on your requirements.

Calculate

 

Previous article What are the different drive formats?
Next article What is Thunderbolt? What is USB?

Compare products

{"one"=>"Select 2 or 3 items to compare", "other"=>"{{ count }} of 3 items selected"}

Select first item to compare

Select second item to compare

Select third item to compare

Compare